Cell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies.

نویسندگان

  • Charlotte V Hague
  • Anthony D Postle
  • George S Attard
  • Marcus K Dymond
چکیده

One of the most developed theories of phospholipid homeostasis is the intrinsic curvature hypothesis, which, in broad terms, postulates that cells regulate their lipid composition so as to keep constant the membrane stored curvature elastic energy. The implication of this hypothesis is that lipid composition is determined by a ratio control function consisting of the weighted sum of concentrations of type II lipids in the numerator and the weighted sum of concentrations of Type 0 lipids in the denominator. In previous work we used a data-driven approach, based on lipidomic data from asynchronous cell cultures, to determine a criterion that allows the different lipid species to be assigned to the set of type 0 or of type II lipids, and hence construct a ratio control function that serves as a proxy for the lipid contribution to total membrane stored curvature elastic energy in vivo. Here we apply the curvature elastic energy proxy to the analysis of lipid composition data from synchronous HeLa cells as they traverse the cell cycle. Our analysis suggests HeLa cells modify their membrane stored elastic energy through the cell cycle. In S-phase type 0 lipids are the most abundant, whilst in G2 type II lipids are most abundant. Changes in our proxy for membrane stored elastic energy correlate with membrane curvature dependent processes in the HeLa cell around division, providing some insights into the interplay between the individual lipid and protein contributions to membrane free energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An in vivo ratio control mechanism for phospholipid homeostasis: evidence from lipidomic studies.

While it is widely accepted that the lipid composition of eukaryotic membranes is under homeostatic control, the mechanisms through which cells sense lipid composition are still the subject of debate. It has been postulated that membrane curvature elastic energy is the membrane property that is regulated by cells, and that lipid composition is maintained by a ratio control function derived from...

متن کامل

Calculation of free energies in fluid membranes subject to heterogeneous curvature fields.

We present a computational methodology for incorporating thermal effects and calculating relative free energies for elastic fluid membranes subject to spatially dependent intrinsic curvature fields using the method of thermodynamic integration. Based on a simple model for the intrinsic curvature imposed only in a localized region of the membrane, we employ thermodynamic integration to calculate...

متن کامل

Oxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.

Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...

متن کامل

Local Changes in Lipid Composition to Match Membrane Curvature

A continuum mechanical model based on the Helfrich Hamiltonian is devised to investigate the coupling between lipid composition andmembrane curvature. Eachmonolayer in the bilayer is modeled as a freely deformable surface with a director field for lipid orientation. A scalar field for the mole fraction of two lipid types accounts for local changes in composition. It allows lipids to access mono...

متن کامل

Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1

UNLABELLED Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2013